If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+59X+60=0
a = 1; b = 59; c = +60;
Δ = b2-4ac
Δ = 592-4·1·60
Δ = 3241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-\sqrt{3241}}{2*1}=\frac{-59-\sqrt{3241}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+\sqrt{3241}}{2*1}=\frac{-59+\sqrt{3241}}{2} $
| 7/12=m/2-m/3+1/4 | | 15x=72=6x | | 12x+18=2(6x+9) | | -8x=16÷5 | | 0.5x-6=13 | | 0=16t^2+20t+50 | | 2x=4(-3x-5)+6 | | -6+10+2=-3-7j | | Y=0.73x+1 | | -7x-4x=1;(-3,-5) | | 14-15p=-18p-19 | | 0=4(5x-3)-8 | | 14-15p=18p-19 | | 33-a=17+a | | 4(6+y)=3(5+y) | | 33−a=17+a | | (6+a)+(3a)=86 | | 9v-11=8v-18 | | 2.2x-9.52=7.2 | | 6/5x-11=-35 | | H=-0.5d^2+d+4 | | n/7=0/8 | | 2a+15=25 | | -5x+30=2x+6 | | 6x-65=x+54 | | 4x=8=-24 | | 3(x+1)=5-5x | | -3x+9=2x-21 | | x+10=-5x-14 | | 20-6m=4m-16m+50 | | 4x+1.3=5x+1.1 | | 3x+1x/2=56 |